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  Abstract: The discrete-time closed-loop PID controller is the 

most popular controller. It is more faster time response and rise 

time than the continuous-time PID controller. Although, we 

have to check the stability in a continuous-time of any digital 

controller, but after using z-transform to convert the system to 

a digital control system we use the digital signals as an input to 

the computer. And treat those signals inside the microprocessor 

by the A.T.U. after that convert them to analog to the final 

element. 

Keywords: PID Proportional Integral Derivative ,RHS Right 

Hand Side ,LHS Left Hand Side ,ADC Analog to Digital 

Converter ,DAC Digital to Analog Converter. 

1. Introduction: 

In the past few decades, analog controllers have often been 

replaced by digital controllers whose inputs and outputs 

are defined at discrete time instances. The digital 

controllers are in the form of digital circuits, digital 

computers, or microprocessors. The discrete-time PID 

controller that means discussing the continuous signal 

which it has been converted from continuous-time to 

discrete-time , therefore always used analog to digital 

converter [1] .  

Digital signal which has been converted it must be 

sampled therefore, Z-transformation and its inverse used to 

solve the difference equations and convert the signal at 

continuous-time to a signal at discrete-time . Digital to 

analog converter must be used after the signal treated by 

the discrete-time PID  controller to operate the plant  for 

example :  a level control plant , the analog subsystem 

includes the plant as well as the amplifiers and actuators 

necessary to drive it. The output of the plant is periodically 

measured and converted to a number that can be fed back 

to the computer using an ADC.  

 

2. The main structure of a digital control system : 

To control a physical system or process using a digital 

controller, the controller must receive measurements from 

the system, process them, and then send control signals to 

the actuator that effects the control action. In almost all 

applications, both the plant and the actuator are analog 

systems. This is a situation where the controller and the 

controlled do not “speak the same language” and some 

form of translation is required. The translation from 

controller language (digital) to physical process language 

(analog) is performed by a digital-to-analog converter, or 

DAC. The translation from process language to digital 

controller language is performed by an analog-to-digital 

converter, or ADC. A sensor is needed to monitor the 

controlled variable for feedback control. The combination 

of the elements discussed here in a control loop is shown 

in 1-1 Variations on this control configuration are 

possible. For example, the system could have several 

reference inputs and controlled variables, each with a loop 

similar to that of Figure 1-1. The system could also 

include an inner loop with digital or analog control. [ 1 ] 

 

 

 

 

 

Figure 2-1 The main structure of digital control system. 

Z-transform used as a key for discrete-time systems to 

solve the difference equations to show the output response of 

the control systems.   

Suppose ���� is a continuous function and we sample this 

function at time intervals of   �  , thus obtaining the data  

����, ��
�, ���
�, … , 
��
�, … 
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let  � �  ��
   ��   ������������  �
Thus:  


��� �  ����
����                  ∞

���
 !"#��� �   $ % ���
�       

 

To convert the equation (2-2) to a z-transform :

 !"#��� �   �$ % ��$�  Z  Z  Z  Z  &$'(     
 

 

3. Stability and mapping between s-domain and z

 

 

 

 

 

 

 

 

 

Figure 3-1 Stability between s-plane and z

Clearly we could see the matching between s

domain the circle on the R.H.S. represent the limit of stability 

because if the pole of  z was inside the circle

the system is stable. But when the pole outside the circle 

red stars) the system is unstable. If the pole is on the unit circle

(the blue stars), system is critical stable. In the same way on 

L.H.S.  the poles at left of the s-plane (the yellow star

system will be stable. But when the pole on the right side of the 

s-plane (the red stars) the system is unstable. If the pole is on 

the image axis of the s-plane (the blue stars), system is critical 

stable.  

4. Root locus : 

Conference on Control, Engineering & Information Technology (CEIT’14)

2014 

111 

� �  $
  ��)��� 

      �� % $� 
         �� % �� 

transform : 

& (         �� % *�   
domain and z-domain: 

plane and z-plane  

Clearly we could see the matching between s-domain and z-

domain the circle on the R.H.S. represent the limit of stability 

inside the circle (the yellow stars), 

the system is stable. But when the pole outside the circle (the 

the system is unstable. If the pole is on the unit circle 

, system is critical stable. In the same way on 

(the yellow stars) the 

. But when the pole on the right side of the 

plane (the red stars) the system is unstable. If the pole is on 

plane (the blue stars), system is critical 

Figure 4-1  Shows the discrete

system. 

+�� ��  
 � $ ��,     ��+
-��� �  .���/���  �  �. 1*�$�� % $���

From equation (4-1) which represents the transfer 

the discrete-time closed-loop control system shown in fig.

and we could see the both poles of the system 0.3678   789 �:; <8=> <8; ?;@<
 

 

 

 

 

 

 

 

Figure 4-2 Root locus of discrete

on the z

 

By draw the root locus in z-plane we must follow steps below : 

1. Leave one of the roots on R.H.S. 

2. Before the next root we look back ( if the number of 

roots were odd there are a pole in that r

otherwise -the number of poles were even

more poles). 

3.  If there is a pole –

away from that place of positive real axis

Point to meet its zero in

axis that point called 

To find out the Break-away point and the Break

• Take the derivative of the characteristic equation (

of the system : $ A -����. 1*�$�� %  $. *1BC                        D  �
�  
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Shows the discrete-time closed-loop control 

 ��+               E��� �  D��� % $� 1*�$ D���� %  �. *1BC�                  �F % $� 
1) which represents the transfer function of 

p control system shown in fig. 4-1, 

and we could see the both poles of the system ? � 1  , ? �?;@<  ? � < 

Root locus of discrete-time closed-loop system 

on the z-plane 

plane we must follow steps below :  

Leave one of the roots on R.H.S.  

Before the next root we look back ( if the number of 

roots were odd there are a pole in that region, 

the number of poles were even- there no 

–in that region- it have to move 

away from that place of positive real axis Breakaway 

to meet its zero in–negative axis- the opposite 

axis that point called Break-in point.  

away point and the Break-in point by : 

Take the derivative of the characteristic equation (4-2) 

� � � �                     �F % �� 1*�$ D � *1BC � A �. *1BC  �  %$ 

�   %��� % $. *1BC� A �. *1BC��. 1*�$!  %�� A $. *1BC� % �. *1BC�. 1*�$�  

Re 

Z1=1 

Z=0 

Z2=0.3678 

J 
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• Equalize the 
+H+� � �  : 

 +D+! ���.1*�$!����!I$.*1BC��JK�!�I$.*1BC!��.1*�$�� !�� %��� A $. *1BC�A�� % $. *1BC�. 1*�$ ��+D+�  �  %�� A �. *1BC�. 1*�$ �� � �     ��  �  �. *1BC       L         ��$ � �. 1�1            �� �
As shown in figure 4-3 below the two open

move from their location � ?M �
to the Breakaway point . After that they move away 

from Breakaway point shaped a curve up and down 

until they meet each other in the Break

to zero . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Root locus move from Breakaway point to 

Break-in point . 

 

 

5. Design discrete-time PID controller: 

 

N; 
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!��.*1BCO��.1*�$�P � �  *1BC� A �. *1BC � � 

                  �C % *�  �  Q √�. *1BC � % �. 1�1  
3 below the two open-loop poles � 1  ,     ?S � 0.3678 � 

to the Breakaway point . After that they move away 

from Breakaway point shaped a curve up and down 

until they meet each other in the Break-in point going 

3 Root locus move from Breakaway point to 

 

 

Figure 5-1 Structure of continuous PID controller .

 

As show in the figure 5-1 above 

continuous PID controller are Proportional plus Integral plus 

Derivative . 

Most commercial controllers provide full PID (also 

called three-term) control action. Including a term that is a 

function of the derivative of the error can ,with high

plants, provide a stable control solution.[ 

 PID controller is represented as ���� �   DT ���� A   DT
�   U ���
By taking Laplace transform :V��� � DT  �
�
+ ��  A  
�
��WXYZY       
� � DD
In the same manner, digital compensators designed in the z

domain for discrete-time control system. 

Figure 5-2 General form of a digital controller

 

Figure 5-2 shows the general form of digital control system. 

The pulse transfer function of the digital 

controller/compensator is written :V���/���  �   E���                 
The closed-loop transfer function of the system becomes :[���\���   �   E���  ��$ A   E���    #
The characteristic equation is :$ A   E���   #���  �   �
In a continuous system, a differentiation of the error signal  ;��� can be represented as : ���� �   +�+�                         
By taking the Laplace transform with zero initial conditions :V���/���  �   �                        
In discrete-time control system, a differentiation can be 

approximated to : ��H�� �   ��H�� %   ��H

The z-transform will be : 
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1 Structure of continuous PID controller . 

above the main component of the 

continuous PID controller are Proportional plus Integral plus 

Most commercial controllers provide full PID (also 

term) control action. Including a term that is a 

function of the derivative of the error can ,with high-order 

plants, provide a stable control solution.[ 2 ] 

PID controller is represented as : U � +�   A   DT 
+ �] ����        �^ % $� 
By taking Laplace transform : ��    A   $    �  /���           �^ % �� DTD�       ��+     
+ � D+DT 

In the same manner, digital compensators designed in the z-

time control system.  

 
2 General form of a digital controller 

2 shows the general form of digital control system. 

The pulse transfer function of the digital 

controller/compensator is written :                                       �^ % *� 
loop transfer function of the system becomes : � ���� �  #���                           �^ % F� 

characteristic equation is : � �                                      �^ % ^� 
In a continuous system, a differentiation of the error signal  

                                       �^ % 1� 
By taking the Laplace transform with zero initial conditions :                                        �^ % B� 

time control system, a differentiation can be 

� % $�
                         �^ % C� 
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V���/���  �  $ % ��$
                                                 �^ % _� 
Hence, the Laplace operator can be approximated to : � �  $ % ��$
  �  � %  $
�                                       �^ % $�� 
Digital PID controller from the equation (5-4) , inserting 

equation (5-10): 

V��� � DT   &
�
+ �� %  $
� ��  A  
��� %  $
� �   A   $    (
��� %  $
� �  /���    �^ % $$� 
By simplified to give : V���/��� � DT  �`� ��  A  
�`$ �   A   `�    ���� %  $�           �^ % $�� 
Where  `�  �  
+
                                                         �^ % $*� `$  �  a$ % �
+
 b                                        �^ % $F� 

`�  �  a
+
 A 

� A  $b                                �^ % $^� 
Tustin’s Rule : also called the bilinear transformation, gives a 

better approximation to integration since it is based on a 

trapezoidal rather than a rectangular area.  � �  ��� %  $�
�� A $�                             �^ % $1� 
 

Substituted the value of   c   into the denominator of equation 

(5-4), still yield a digital PID controller of the form shown in 

equation (5-12) where : `�  �  
+
                                                                    �^ % $B� `$  �  a 
�
� % �
+
 %  $b                                         �^ % $C� 
`$  �  a 
�
� A 
+
 A  $b                                           �^ % $_� 

To understand the output response of the PID controller we 

have to see the procedures in the following Example : 

Example (5-1):  

The laser guided missile shown in figure 5-3 has an open-loop 

transfer function (combining the fin dynamics and missile 

dynamics) of  [ 2 ]  ����  *��� �  ������ A   ^�                          �^ % ��� 
A lead compensator, has a transfer function of :   $��� �  �. C �$ A   � ��$ A   �. �1�^ � �                          �^ % �$� 

(a) Find the z-transform of the missile by selecting a 

sampling frequency of at least 10 times higher than 

the system bandwidth . 

(b) Convert the lead compensator in equation (5-21) into 

a digital compensator using the simple method, i.e. 

equation (5-10) and find the step response of the 

system. 

(c) Convert the lead compensator in equation (5-21) into 

a digital compensator to find the step response of the 

system, thus use Tustin’s rule, to find the step 

response of the system. 

(d) Compare the response found with the continuous step 

response, and convert the compensator that is closest 

to its difference equation. 

 

 

 

 

 

 

Figure 5-3 Laser guided missile 

Solution : 

 
Figure 5-4 Closed-loop frequency response for both lead 

compensator designs. 

 

Table 5-1 System frequency domain performance : 

 

Closed-loop 

peak  dT 
Gain 

margin 
Bandwidth 

Phase 

margin 

 5.5 dB 13.75 dB 5.09 rad/s 30.6o 

 

(a) From figure 5-4 lead compensator two, the bandwidth 

is 5.09 rad/s or 0.81 Hz . Ten times this is 8.1 Hz, so 

select a sampling frequency of 10Hz, i.e. =0.1 

seconds. For a sample and hold device cascaded with 

the missile dynamics.[ 2 ]  ��� � e$ % ��
�� f g ������ A   ^�h                          �^ % ���  ��� � �$ % ��
�� g ���*�� A   ^�h                           �^ % �*� 
For � � 0.1 c , ;ij7�k<8 �4 % 26� nk== o; 7c o;=<n p 
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 ��� �  �. ���_1 ��  A   �. �$�FC � A �. ���*�* %  �. 1�1^ �� %  �. 1�1^        �^ % �F� 
 

(b) Substituting the value of s which is in equation (5-10) 

into the lead compensator given in equation (5-21) : 

E��� �  �. C q 
� A  �� %  $�
�
� A  �. �1�^ �� %  $�
� r                                
 E��� �  ^. F$^� � %   F. _�*� %   �. *CF1                                �^ % �^� 

 

(c)  Using Tustin’s  rule  by  substituting  the   value  of   

s  of equation (5-16) into lead compensator equation 

(9-23): 

E��� �  �. C s 
�� A $� A  ��� %  $�
�� A $�
�� A $� A  �. �1�^ t��� %  $�u
�� A $� v 
 E��� �  V���/���  �  B. F1B � %   1. B^1� %   �. $$$           �^ % �1� 
 

(d)  From Figure (5-5) below, we could see clearly that 

the digital compensator using Tustin’s rule is closest 

to the continuous response. From equation (5-26)  

 E��� �  V���/���  �  B. F1B  %   1. B^1��$$ %   �. $$$��$       �^ % �B� 
 

 
Figure 5-5 Comparison between discrete digital 

compensator in both ( simple method,  Tustin’s rule ) 

response  and continuous response. 
 

 

The difference equation for the digital compensator is : 

 

��H�� �   �. $$$ ��H % $�
 A B. F1B ��H�� %   1. B^1 ��H % $�
   �^ % �C� 
 

 

6.  Result discussion of the comparison between an analog 

and digital PID controller : 

 

For a special comparison of The time response between an 

analog PID controller and digital PID controller shown in 

figure 6-1 after finding the Laplace transformation , tune the 

parameters of the PID controller and convert the transfer 

function to the  z-transformation , and plot the analog PID 

controller with gain w � 100 and both digital PID controller 

gains but with K= 9.62,13.2, the system has ζ � 0.7 , 0.5, and  yz  �  43.2, 46.2 @79/c, respectively. Both designs have a 

sufficiently fast time constant, but the second damping ratio is 

less than the specified value of 0.7. Lower gains give an 

unacceptably slow analog design. The time response for the 

high-gain digital design is very fast. However, it has an 

overshoot of over 4% but has a settling time of 5.63 s.  

 

 
Figure 6-1 Time step response for the digital PID design 

with K = 9.62 (light gray), K = 13.2 (dark gray) and for 

analog design (black) K =100. 

 

 

The digital design for ζ = 0.7  has a much slower time response 

than its analog counterpart . It is possible to improve the design 

by trial and error, including redesign of the analog controller, 

but the design with  ζ = 0.5 may be acceptable. One must 

weigh the cost of redesign against that of relaxing the design 

specifications for the particular application at hand. The final 

design must be a compromise between speed of response and 

relative stability.[ 1 ] 

 

7. Laboratory Experiments  

>> num=[20]; 

>> den=conv([1 0 0],[1 5]); 

>> Ts=0.1; 

>> ncomp=0.8*[1 1]; 

>> dcomp=[0.0625 1]; 
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>> [nol,dol]=series(ncomp,dcomp,num,den); 

>> [ncl,dcl]=cloop(nol,dol); 

>> [numd,dend]=c2dm(num,den,Ts,'zoh'); 

>> [ncomd,dcomd]=c2dm(ncomp,dcomp,Ts,'tustin'); 

>> printsys(num,den,'s') 

 num/den =  

         20 

   ----------- 

   s^3 + 5 s^2 

>> printsys(num,den,'z') 

 num/den =  

         20 

   ----------- 

   z^3 + 5 z^2 

>> printsys(ncomp,dcomp,'s') 

 num/den =  

   0.8 s + 0.8 

   ------------ 

   0.0625 s + 1 

>> printsys(ncomp,dcomp,'z') 

 num/den =  

   0.8 z + 0.8 

   ------------ 

   0.0625 z + 1 

>> [nold,dold]=series(ncomd,dcomd,numd,dend); 

>> [nold,dold]=cloop(nold,dold); 

>> [nold,dold]=series(ncomd,dcomd,numd,dend); 

>> [ncld,dcld]=cloop(nold,dold); 

>> subplot(211),step(ncl,dcl); 

>> subplot(212),dstep(ncld,dcld); 

 

 

Figure 6-2 Laboratory experiment : Comparison between 

analog and digital PID controller  

 

 

Conclusion  
 

Due to both figures (4-5  and 4-6) we can clearly see the 

difference between the continuous closed-loop PID controller 

and digital closed-loop PID controller in the output responses 

even if they are have the same parameters like  ζ  = 0.7 . 

There all a lot of benefits when we use digital PID controllers 

instead of using continuous PID controller they could 

summarized in following points : 

1. Accuracy. Digital signals are represented in terms of 

zeros and ones to represent a single number. This 

involves a very small error as compared to analog signals 

where noise and power supply drift are always present. 

2. Implementation errors. The errors that result from 

digital representation and arithmetic are negligible. By 

contrast, the processing of analog signals is performed 

using components such as resistors and capacitors with 

actual values that vary significantly from the nominal 

design values. 

3. Flexibility. An analog controller is difficult to modify 

or redesign once implemented in hardware. A digital 

controller is implemented in firmware or software, and 

its modification is possible without a complete 

replacement of the original controller. 

4. Speed. The speed of computer hardware has increased 

exponentially. This increase in processing speed has 

made it possible to sample and process control signals 

at very high speeds.  

5. Cost. Although the prices of most goods and services 

have steadily increased, the cost of digital circuitry 

continues to decrease.  
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